Training Probabilistic Spiking Neural Networks with First-to-spike Decoding
نویسندگان
چکیده
Third-generation neural networks, or Spiking Neural Networks (SNNs), aim at harnessing the energy efficiency of spike-domain processing by building on computing elements that operate on, and exchange, spikes. In this paper, the problem of training a two-layer SNNs is studied for the purpose of classification, under a Generalized Linear Model (GLM) probabilistic neural model that was previously considered within the computational neuroscience literature. Conventional classification rules for SNNs operate offline based on the number of output spikes at each output neuron. In contrast, a novel training method is proposed here for a first-to-spike decoding rule, whereby the SNN can perform an early classification decision once spike firing is detected at an output neuron. Numerical results bring insights into the optimal parameter selection for the GLM neuron and on the accuracy-complexity trade-off performance of conventional and first-to-spike decoding.
منابع مشابه
Adversarial Training for Probabilistic Spiking Neural Networks
Classifiers trained using conventional empirical risk minimization or maximum likelihood methods are known to suffer dramatic performance degradations when tested over examples adversarially selected based on knowledge of the classifier’s decision rule. Due to the prominence of Artificial Neural Networks (ANNs) as classifiers, their sensitivity to adversarial examples, as well as robust trainin...
متن کاملSupervised learning based on temporal coding in spiking neural networks
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is...
متن کاملInput arrival-time-dependent decoding scheme for a spiking neural network
Spiking neurons model a type of biological neural system where information is encoded with spike times. In this paper, a new method for decoding input spikes according to their absolute arrival times is proposed. The output times, which are responses to different input patterns, can differentiate these input patterns uniquely. Features of Spiking Neural Networks (SNN) such as actual spike input...
متن کاملDecoding spatiotemporal spike sequences via the finite state automata dynamics of spiking neural networks
Temporally complex stimuli are encoded into spatiotemporal spike sequences of neurons in many sensory areas. Here, we describe how downstream neurons with dendritic bistable plateau potentials can be connected to decode such spike sequences. Driven by feedforward inputs from the sensory neurons and controlled by feedforward inhibition and lateral excitation, the neurons transit between UP and D...
متن کاملBayesian Population Decoding of Spiking Neurons
The timing of action potentials in spiking neurons depends on the temporal dynamics of their inputs and contains information about temporal fluctuations in the stimulus. Leaky integrate-and-fire neurons constitute a popular class of encoding models, in which spike times depend directly on the temporal structure of the inputs. However, optimal decoding rules for these models have only been studi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.10704 شماره
صفحات -
تاریخ انتشار 2017